Reduction of Controlled Lagrangian and Hamiltonian Systems with Symmetry
نویسندگان
چکیده
We develop reduction theory for controlled Lagrangian and controlled Hamiltonian systems with symmetry. Reduction theory for these systems is needed in a variety of examples, such as a spacecraft with rotors, a heavy top with rotors, and underwater vehicle dynamics. One of our main results shows the equivalence of the method of reduced controlled Lagrangian systems and that of reduced controlled Hamiltonian systems in the case of simple mechanical systems with symmetry.
منابع مشابه
Effects of asymmetric stiffness on parametric instabilities of rotor
This work deals with effects of asymmetric stiffness on the dynamic behaviour of the rotor system. The analysis is presented through an extended Lagrangian Hamiltonian mechanics on the asymmetric rotor system, where symmetries are broken in terms of the rotor stiffness. The complete dynamics of asymmetries of rotor system is investigated with a case study. In this work, a mathematical model is ...
متن کاملX iv : m at h - ph / 0 20 20 33 v 1 2 2 Fe b 20 02 Adler - Kostant - Symes systems as Lagrangian gauge theories
It is well known that the integrable Hamiltonian systems defined by the Adler-Kostant-Symes construction correspond via Hamiltonian reduction to systems on cotangent bundles of Lie groups. Generalizing previous results on Toda systems, here a Lagrangian version of the reduction procedure is exhibited for those cases for which the underlying Lie algebra admits an invariant scalar product. This i...
متن کاملThe Symmetries of Equivalent Lagrangian Systems and Constants of Motion
In this paper Mathematical structure of time-dependent Lagrangian systems and their symmetries are extended and the explicit relation between constants of motion and infinitesimal symmetries of time-dependent Lagrangian systems are considered. Starting point is time-independent Lagrangian systems ,then we extend mathematical concepts of these systems such as equivalent lagrangian systems to th...
متن کاملReduction of Controlled Lagrangian Systems with Symmetry
We extend the theory of controlled Lagrangian systems to include systems with symmetry and the Lagrangian reduction theory. This extension is crucial to study examples such as spacecraft control, underwater vehicle control, etc.
متن کاملRegular Reduction of Controlled Hamiltonian System with Symplectic Structure and Symmetry
In this paper, our goal is to study the regular reduction theory of regular controlled Hamiltonian (RCH) systems with symplectic structure and symmetry, and this reduction is an extension of regular symplectic reduction theory of Hamiltonian systems under regular controlled Hamiltonian equivalence conditions. Thus, in order to describe uniformly RCH systems defined on a cotangent bundle and on ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Control and Optimization
دوره 43 شماره
صفحات -
تاریخ انتشار 2004